Research needs better benchmarks to detect elusive quantum speedup

D-Wave quantum chip on a wafer

Texas A&M University physicist Helmut G. Katzgraber’s research takes him to the crossroads of physics, computer science, quantum information theory and statistical mechanics. For more than a decade, he has been pushing the frontiers of computational physics to study hard optimization problems and disordered materials, applying his expertise to problems in the fascinating and fast-evolving field of quantum computing.

This past week, his work caught the attention of the global research community because of a study related to a particular commercial quantum computing device, the USD 10M D-Wave Two™ — more specifically, its documented failure to outperform traditional computers in head-to-head speed tests by Ronnow et al.

Not so fast, says Katzgraber, whose own National Science Foundation-funded research points to an intriguing possible explanation: Benchmarks used by D-Wave and research teams alike to detect the elusive quantum speedup might not be the best to do so and, therefore, not up to the test.

More at the College of Science.