Skip to Main Content

New approach to diagnosis: Look for problems with protein assemblies

Proteins in the body need to be perfectly arranged, or folded, to do their jobs. When there is a misfolding, a number of problems and diseases—including diseases of aging and different cancers—can result. A new method, developed by a team led by Yubin Zhou, associate professor, and Yun Nancy Huang, assistant professor, both at the Texas A&M Institute of Biosciences and Technology, can examine protein assembly in real time, in living cells, to find problems with assembly and diagnose the resulting diseases.

Their research is published in Chemical Science, the Royal Society of Chemistry’s peer-reviewed flagship journal.

Proteins are organic molecules made up of different combinations of 20 amino acids, the building blocks of life. For any given protein, the amino acids must be joined together by chemical bonds and then folded properly, in single copy—called a monomer—or multiple copies, called an oligomer, to execute the protein’s function within cells.

Nearly a third of the proteins in the human body are assembled as oligomers to perform their biological tasks. Haemoglobin, for example, must be assembled as a tetramer (a specific type of oligomer with four units) to most efficiently transport oxygen through the blood stream. A disruption of haemoglobin’s assembly would compromise the uptake of oxygen into cells, potentially causing damage to cells throughout the body due to lack of oxygen. That’s where Zhou’s new study comes in.

“We developed a novel method to examine protein assembly in real time and to dissect the structure-function relations in living cells. Normally this is done in test tubes,” Zhou said. “Our study meets the urgent and critical need for quantitative assessment of protein structure and monitoring of protein actions under native conditions.”

Zhou calls the engineered, genetically encoded mini-tags MoTags, which is short for monomer/oligomer detection tag. They are able to tell how many units are in the protein, which the researchers can then compare to how many there are supposed to be in that particular protein—and therefore determine if there is any misfolding.

It is thought that misfolding of proteins, which naturally happens during the aging process as proteins are damaged, can cause some of the major diseases associated with aging, from cancer to Alzheimer’s and Parkinson’s. Therefore, a method that can quickly tell if a protein is inappropriately assembled in real time, in living cells, will not only help scientists to better understand the pathogenic mechanisms, but also aid the diagnosis of disease and possible treatments.