Modified mosquitos: Entomologists install genes that delete themselves

istockphoto.com/RolfAasa

Texas A&M AgriLife Research scientists have tested a technology to make temporary genetic modifications in mosquitoes. The modifications self-delete over time.

The mechanism to make temporary genetic changes could be important for scientists hoping to modify mosquitoes in ways that help manage populations and prevent vector-borne diseases like West Nile virus without permanently altering wild populations’ genetic makeup.

An article detailing their test results, “Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti,” was published in Proceedings of the National Academy of Sciences’ PNAS Nexus. The authors, Zach Adelman and Kevin Myles, professors in the Texas A&M College of Agriculture and Life Sciences Department of Entomology, describe a method for programming the removal of edited genes within populations of mosquitoes over multiple generations.

The method is a first step toward building safeguards for genetic modifications developed to control populations of mosquitoes and the vector-borne diseases they carry. The idea is to test proposed changes without making the changes permanent and without the risk of transmitting them to wild populations, Adelman said.

“There are lots of ecological questions we don’t know the answers to, and when you are testing technology, you don’t want to get into a situation where you have to tell a regulatory agency or the public that ‘if something bad happens, we’re just out of luck,’” Adelman said. “This mechanism is about how we get back to normal whether the experiment does or doesn’t come out the way we expect.”

Adelman and Myles are co-directing a team of scientists who received a five-year, $3.9 million grant from the National Institute of Allergy and Infectious Diseases to test and fine-tune the self-eliminating transgene technology.

More at the College of Agriculture and Life Sciences