Skip to Main Content

Engineers apply artificial intelligence to find new shape memory alloy

Shutterstock.com/jijomathaidesigners

Funded by the National Science Foundation’s Designing Materials to Revolutionize Our Engineering Future (DMREF) Program, researchers from the Department of Materials Science and Engineering at Texas A&M University used an Artificial Intelligence Materials Selection framework (AIMS) to discover a new shape memory alloy.

The shape memory alloy showed the highest efficiency during operation achieved thus far for nickel-titanium-based materials. In addition, their data-driven framework offers proof of concept for future materials development. 

This study was recently published in Vol. 228 of the Acta Materialia journal. 

Shape memory alloys are used in various fields where compact, lightweight and solid-state actuations are needed, replacing hydraulic or pneumatic actuators because they can deform when cold and then return to their original shape when heated. This unique property is critical for applications, such as airplane wings, jet engines and automotive components, that must withstand repeated, recoverable large-shape changes. 

There have been many advancements in shape memory alloys since their beginnings in the mid-1960s, but at a cost. Understanding and discovering new shape memory alloys has required extensive research through experimentation and ad-hoc trial and error. Despite many of which have been documented to help further shape memory alloy applications, new alloy discoveries have occurred in a decadal fashion.

About every 10 years, a significant shape memory alloy composition or system has been discovered. Moreover, even with advances in shape memory alloys, they are hindered by their low energy efficiency caused by incompatibilities in their microstructure during the large shape change. Further, they are notoriously difficult to design from scratch.

To address these shortcomings, Texas A&M researchers have combined experimental data to create an AIMS computational framework capable of determining optimal materials compositions and processing these materials, which led to the discovery of a new shape memory alloy composition.

“When designing materials, sometimes you have multiple objectives or constraints that conflict, which is very difficult to work around,” said Ibrahim Karaman, Chevron Professor I and materials science and engineering department head. “Using our machine-learning framework, we can use experimental data to find hidden correlations between different materials’ features to see if we can design new materials.”

The shape memory alloy found during the study using AIMS was predicted and proven to achieve the narrowest hysteresis ever recorded. In other words, the material showed the lowest energy loss when converting thermal energy to mechanical work. The material showcased high efficiency when subject to thermal cycling due to its extremely small transformation temperature window. The material also exhibited excellent cyclic stability under repeated actuation.