Research needs better benchmarks to detect elusive quantum speedup
Texas A&M University physicist Helmut G. Katzgraber’s research takes him to the crossroads of physics, computer science, quantum information theory and statistical mechanics. For more than a decade, he has been pushing the frontiers of computational physics to study hard optimization problems and disordered materials, applying his expertise to problems in the fascinating and fast-evolving field of quantum computing.
This past week, his work caught the attention of the global research community because of a study related to a particular commercial quantum computing device, the USD 10M D-Wave Two™ — more specifically, its documented failure to outperform traditional computers in head-to-head speed tests by Ronnow et al.
Not so fast, says Katzgraber, whose own National Science Foundation-funded research points to an intriguing possible explanation: Benchmarks used by D-Wave and research teams alike to detect the elusive quantum speedup might not be the best to do so and, therefore, not up to the test.