Skip to Main Content

Balancing act: Bioenergy sorghum shifts carbon dioxide from air to soil

Texas A&M AgriLife

The world faces an increasing amount of carbon dioxide in the atmosphere and a shortage of carbon in the soil. However, bioenergy sorghum can provide meaningful relief from both problems, according to a new study by Texas A&M AgriLife Research scientists.

The study, “Bioenergy sorghum’s deep roots: A key to sustainable biomass production on annual cropland,” was recently published in GCB Bioenergy.

According to the research, bioenergy sorghum hybrids capture and sequester significant amounts of atmospheric carbon dioxide in soil. The crop can improve soil fertility and potentially earn carbon credits to offset greenhouse gas emissions.

In addition, the study shows that bioenergy sorghum’s unusually deep root system can reach sources of water and nutrients untapped by other annual crops. These results suggest the crop can help manage fertilizer runoff from other annuals in a crop rotation.

The senior investigator for the work is John Mullet, professor and Perry L. Adkisson Chair in Agricultural Biology in the Department of Biochemistry and Biophysics. A key collaborator is Bill Rooney,  professor and Borlaug-Monsanto Chair for Plant Breeding and International Crop Improvement, Department of Soil and Crop Sciences. Both are in the Texas A&M College of Agriculture and Life Sciences, Bryan-College Station.

The U.S. Department of Energy Great Lakes Bioenergy Research Center and the Advanced Research Projects Agency-Energy funded the project.